Geology of the New York City Water Tunnel System

Charles Merguerian

James Hall [1811-1898]

Geologic Map Manhattan *(after Kemp)*

After Berkey 1910

Taconic Arc – Passive Margin Collision

Accretionary Wedge

Interpretive Geologic Map of SE Manhattan and Adjacent Areas Based on Borings From Berkey 1910

Merguerian 1984

Interpretive NW-SE Geologic Section

Dutch Settlers, South Manhattan

Manhattan 1811

NYC Aqueduct System

Gravity Feed System

SHAFT ON LINE SHAFT NOT ON LINE • FUTURE CONNECTION MAIN (High-Elevation) 15B 16B 5B 6B 7B 8B 9B 10B 12B 14B 11B RESERVOIR LOW-ELEVATION RESERVOIR 325 +300m MSL-225 300m 125 MSL

+300 RESERVOIR

DISTRIBUTION

CITY TUNNEL NO.3: STATUS OF OPERATION

SHAFT 8B BOOSTER CHLORINATION

> PARK RESERVOIR

ELEVATION: +300

BOOSTER CHLORINATION STATION

Cut and Cover Construction, NYC Aqueduct System

Catskill Aqueduct - Cut and Cover Support

Pressure Tunnel Construction, NYC Aqueduct System

CT3, Drill and Shoot Tunnel

Holing Through – Delaware Aqueduct Shaft 21 (1940)

CT3, Scaling Drill and Shoot Tunnel

TBM Tunneling

TBM Chip Production

Kerf Pattern in Hard Rock

October 1999

Excessive Fines

Anticipated vs. Actual Penetration Rate

Comparative Lithologic Analysis

Density Queens Tunnel (Mean = 2.87 g/cm³)

Density Analysis

			Mean
	Low	High	Density
Granite	2.516	2.809	2.667
Diorite	2.721	2.960	2.839
Gabbro	2.850	3.120	2.976

QT Mean = 2.87 (Dioritic Rock Mass)

From: Clark (1966, p. 20)

Early M₁ Garnet

Produced during initial (M₁) high-grade metamorphism of Queens Tunnel Plutonic Complex Coarse- grained and inclusion free with orangey cast Intergrown with clino- and orthopyroxenes

Secondary M₂ Garnet

Finer- grained and pale-pink in color Poikiloblastic habit with abundant inclusions

Forms symplectic rims around plagioclase and pyroxene

Hartland vs. Fordham Rock Fabric

- Micaceous (+/- hornblende) penetrative foliation anticipated
 - Based on boring logs, pre-bid reports
- Weakly to non-foliated "granoblastic" rock mass found

Typical Fordham

Orientation of Rock Layering

NE strike and moderate 57 degree dip anticipated

- [Based on borings, Chesman, Tarkoy]

Highly variable trends found

Extended reaches of tunnel exhibit gentle dips

Only one boring (QTL-12) exhibited gentle dips at tunnel horizon

	NE Leg		NW Leg	
Gentle Dips	17/93	18%	44/139	32%
Moderate Dips	34/93	37%	28/139	20%
Steep Dips	42/93	45%	67/139	48%

Fallout from Reclined Folds and Flat Layering

Brittle Faults

Group B

- Hundreds of faults mapped in five major groups
- From oldest to youngest:

Group A = NW strike and gentle SW dip

Group B = ENE strike and steep dips

Group C = Subhorizontal fractures, faults, and shears

Group D = NNE-trending fault system (hitherto unknown)

Group E = NNW-trending "Manhattanville" fault system

Fallout from Intersecting Joints and Layering CROWN -AMPH GNEISS FALLOUT 2'-3' AMPH GNEISS INTENSECY **JOINTED** HEISS M23W 655W STRESS DIORITIC GNEISS DARK GREY CROWN 137+00 138+00

Five Laterally Extensive Dikes

Exposed	Thick-
----------------	--------

	Stationing	Orientation	Length	ness	Brief Comments
1	109+20 - 109+52	N65°W, 57°NE	32'	12'	cuts N58°E, 83°NW normal fault
2	117+58 - 118+24	? - RW Only	66'	>8'	cuts N52°E, 76°NW normal fault and shear zone
3	128+70 - 129+21	? - LW Only	51'	7'	cuts D ₃ shear zone
	129+53 - 130+41	N48°W, 78°SW	88'	11'	cuts N20°E, 10°NW thrusts and older F ₃ fold
4	131+70 - 132+42	? - LW Only	72'	6'	cuts N30°W, 23°SW thrust fault
	132+40 - 132+56	? - RW Only	16'	3'	thin selvage cuts thrust fault and shear zone
	132+58 - 133+62	N61°W, 81°NE	104'	5'-10'	cuts N44°E, 83°SE reverse shear zone; fractured
5	149+93 - 151+36	N52°W, 90°	143'	16'	cut by N20°E, 70°NW normal fault; clay-rich gouge
	151+45 - 152+40	N40°W, 83°SW	95'	14'	cut by N18°E, 70°NW normal fault; clay-rich gouge

Dike 1

Dike 5

Permian Lava Flows in Woodside?

Ready For Some More Winter?

Edge of Buried Cretaceous

Edge of Buried Cretaceous

CT3 Stage 2
Borings Define the
NW Limit of
The Buried
Cretaceous

Edge of Buried Cretaceous Underlies The Harbor Hill Moraine

Fluhr and Terenzio (1984)

Glacial Lake Strata and the Harbor Hill Moraine

Post-Woodfordian Drainage Through The Narrows

After Berkey (1933)

Did Eroded Cretaceous
Coastal Plain Cuesta
Influence the Terminal
Position of The
Harbor Hill Moraine?

For many free publications on the Geology of New York City Visit www.dukelabs.com

An Unauthorized Lunch Break at Dukelabs