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ABSTRACT: Geological factors including the orientation, condition and frequency of discontinuities in rock
mass, and also intact rock properties such as strength and brittleness are crucial parameters for performance
analysis of hard rock TBMs. These data along with machine specifications such as thrust and power allow the
appraisal and prediction of machine penetration rates. Recently completed projects include the Queens fresh-
water, Manapouri Second tailrace hydropower and the Milyang hydropower tunnels are assessed to investigate
the effect of geological and rock mass conditions on the penetrability of utilized full face tunneling machines.
Compilation of the experiences and datasets obtained from these projects indicates that even though intact rock
properties including mineralogy, texture, metamorphic grade, hardness, strength and brittleness have an effect
on the breakthrough of the machines, the most significant and controlling geological parameters are the orienta-
tion, condition and frequency of discontinuities in rock mass encountered along the tunnel. Thus, the geological
conditions of the site should be investigated in early stage of the constructed tunnel and continuously updated
until projects are completed.

1 INTRODUCTION

Performance of tunnel boring machines (TBM)
depends on both geological conditions and rock mass
characterizations encountered at the site as well as uti-
lized machine specifications such as thrust and power.
Geotechnical site investigation and TBM performance
analysis are essential to develop construction sched-
ules and cost analysis for any tunnel project. TBM
performance prediction refers to the estimation of the
rate of penetration (ROP), [the excavated distance as
machine is actively mining or boring the face], and
the advanced rate (AR), [the distance mined on a daily
basis while including machine maintenance and other
support activities].

Various researches have been conducted to investi-
gate the affect of intact rock properties, geological and
rock mass condition on TBM performance to estimate
the rate of penetration (Ozdemir, 1977; Aeberli and
Wanner, 1978; Nelson and O’Rourke, 1983; Lislerud,
1988; Rostami and Ozdemir, 1993; Bruland, 1999;
Barton, 2000; Cigla et al., 2001; Yagiz and Ozdemir,
2001; Yagiz, 2002, 2006a, 2008; Gong and Zhao,
2009; Yagiz et al., 2009). Even though numerous
researches have been performed on this issue, there is
no universally acceptable approach to generalize the

effect of intact rock properties, geological and rock
mass conditions on the performance of tunnel boring
machine and to estimate the rate of penetration.

In our study, geological controls on the break-
through of tunnel boring machine in hard rock terrains
are analyzed using laboratory and field data obtained
from various tunneling projects around the world.

2 PROJECTS

The dataset established for this study consists of
intact rock properties such as strength and brittle-
ness; full-face machine data i.e., thrust and power and
also quantified geological parameters including con-
ditions, frequency and orientation of discontinuities
encountered in rock mass along the excavated tunnels
including Queens, Manapouri and Milyang projects.

2.1 Queens freshwater tunnel

The tunnel was constructed to improve distribution of
freshwater throughout the City of New York, espe-
cially in county of Queens. Beneath Brooklyn and
Queens, an 8 km long concrete-lined pressure tunnel
was excavated at an average depth of 200 m below sea
level through hard, Proterozoic metamorphic rocks of
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Table 1. Averaged rock properties with rock types for
tunnels; Queens, Manapouri and Milyang respectively.

UCS BTS BI DPW α ROP
Rock type MPa MPa kN/mm m deg m/hr

Rhyodacite 151 8.9 34 0.10 43 2.42
Granitoid gniess 158 9.3 34 1.02 46 2.02
Amphibolite 161 9.9 43 0.56 28 2.35
Orthogneiss 137 9.4 35 1.11 46 2.05
Gneiss/schist 148 9.7 33 1.10 47 1.99

Calc-silicate 162 7.7 36 1.32 37 1.04
Granitic gneiss 97 7.1 32 1.16 34 1.26
Meta dolorite 124 12 29 1.63 25 0.94
Meta-andesite 147 11 33 1.34 36 1.32
Paragneiss 111 10 31 3.33 27 1.11

Fine granite 375 17 37 1.3 n/a 0.48
Medium granite 176 11 36 1.3 n/a 0.99

the Appalachian mountain belt by utilizing an open-
beam TBM (Robbins, Model 235–282). The machine
bored through hard, poorly foliated and jointed for-
mations of various metamorphic and meta-igneous
rocks, i.e., gneiss and schist mixture, granitoid gneiss,
amphibolite, orthogneiss and also swarm of rhyodacite
dikes. (Merguerian, 2001; Brock et al., 2001; Yagiz,
2002; Merguerian and Ozdemir, 2003). The ranges
of quantified geological and rock properties with
actual penetration rate obtained from tunnel project
are illustrated in Table 1.

2.2 Manapouri Second tailrace hydropower tunnel

The Second tailrace tunnel of the Manapouri hydro-
power station was excavated along the various rocks
including calcslicate, metadolorite, meta-andesite,
paragneiss, and granitic gneiss in the Southwestern
New Zealand. The objective of the tailrace tunnel was
to increase the overall cross-sectional area of flow,
thereby reducing the flow velocities and associated
frictional head losses (Kim, 2004; Macfarlane, et al.,
2008).The tunnel is about 9.8 km long with 10m diam-
eter and was excavated with open type TBM (Robbins,
Model 323–288). Excavated rock type and properties
are illustrated inTable 1 together with field penetration
rate.

2.3 Milyang hydropower tunnel

The Milyang tunnel project about 5.4-km long was
excavated along the igneous rock mass ranging from
fine to medium textured granite to deliver clean water
from Milyang dam to Yangsan area through 2.6 m-
diameter hydro-tunnel in South Korea (Kim, 2004)
using open type TBM (WIRTH, Model TB 260E). The
ranges of UCS of rock are various from 176 to more
than 370 MPa. Thus, obtained penetration rate can
be quite different from fine grained through medium
grained granite along the excavated tunnel as shown
in Table 1.

Figure 1. Generalized relationships between the DPW and
ROP.

Figure 2. Generalized relationships between the α and ROP.

3 GEOLOGICAL CONDTIONS

Geological condition can be quantified as frequency
and orientation of discontinuity in rock mass as well
as main regional/global geological structures such as
faults and shear zones encountered in the field. Fur-
ther, intact rock properties including strength and
brittleness should also be considered for performance
analysis in mechanical tunnels.

3.1 Orientation and frequency of discontinuities

Geological condition including frequency, condition
and orientation of discontinuities such as joints, faults
and foliations have great effect on the TBM perfor-
mance (Yagiz, 2002; Merguerian, 2008). Discontin-
uity frequency can be quantified via distance between
planes of weakness (DPW), as orientation of discon-
tinuities may be quantified via alpha angle (α), the
angle between the TBM driven direction and the plane
of weakness. These parameters have been used for
quantifying the geological properties of rock mass in
various performance models (Bruland, 1999; Barton,
2000; Yagiz, 2002; 2006b, 2008; Yagiz et al., 2008). It
is found that both DPW and alpha angle have a affect
on the ROP in fractured hard rock mass as shown in
Figure 1 and 2 respectively.
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Figure 3. Generalized relationships between the UCS,
thrust and cutter head power with the ROP (Yagiz et al.,
2009a).

Figure 4. Generalized relationships between the BI and
ROP.

So, geological parameters including frequency,
condition and orientation of discontinuities in rock
mass encountered along the tunnel should also be
assessed with care. The alpha angle [the angle between
plane of weakness and the TBM driven direction] has
major control on the rate of penetration. ROP increases
with the alpha angle in between 0◦ to 65◦. After 65◦ of
it, the ROP decreases gradually. So, the rate of pene-
tration has been found the highest as the alpha angle
ranges from about 50◦ to 65◦. Consequently, the high-
est ROP is obtained as DPW ranges from about 20 to
40 cm. More than 2 m away from the machine, TBM
is not much affected from a weakness plane or discon-
tinuity. Conversely, as the DPW is around less than
20 cm, then the machine utilization decreases and so
does the ROP due to increment of the down time.

3.2 Intact rock properties

Intact rock strength both uniaxial compression and
Brazilian tensile strength (UCS and BTS), are com-
monly used for estimation of cost, time to be complete
the project and machine performance in mechanical
tunneling (Rostami and Ozdemir, 1993; Yagiz et al.,
2008; Gong and Zhao, 2009). Even though intact rock
strengths are usually used for estimating theTBM pen-
etration in hard rock mass, those properties are not

Table 2. Specifications of TBMs utilized for excavated
tunnels.

Project Thrust Torque Power Disc Dia∗ U
Name Ton Ton-m Hp RPM # cm %

Queens 1575 1170 3800 8.3 50 43.2 38
Manapouri 1634 873 3120 5.07 68 48.3 34
Milyang 395 267 760 13 22 43.2 32

∗Dia refers to disc diameter.

enough to estimate and analyze the TBM performance
in fractured hard rock mass. Although the BTS of rock
has little effect on TBM performance in fractured rock
mass, the UCS of rock is an important parameter for
evaluating the ROP (Figure 3). There is no universally
accepted test to quantitative measurement of rock brit-
tleness; however, several indices have been introduced
(Hucka and Das, 1974; Bruland, 1999; Yagiz, 2009;
Yagiz and Gokceoglu, 2010). The brittleness index
(BI) introduced by Yagiz, (2009) has been used for
assessing the brittleness affect on the rate of pene-
tration herein (Figure 4). So, the rate of penetration
increases with rock brittleness as decreases with the
UCS in general.

4 MACHINE SPECIFICATIONS

The machine specifications and in particular opera-
tional parameters including the ranges of applied thrust
and power, diameter and number of disc cutters, con-
ducted rotation per minutes (RPM) have effect on the
rate of penetration. The effect of the TBM thrust and
power on ROP together with rock strength is depicted
in Figure 3. So, machine specification, condition and
operation should be also considered to obtain the
ultimate benefit from the operated machine. Further,
utilization (U) that is the percentage of the shift time
during boring activity occurs is one of the main param-
eters to be given careful consideration (Yagiz, 2010).
U depends more on geological condition, contractor
capabilities and maintenance plans. TBM specifica-
tions with around 90% efficiency and averaged U for
excavated tunnels are given in Table 2.

5 RESULTS

Geological conditions and discontinuity properties of
rock mass have a great affect on both breakthrough
of machines, cost scheduling and time to complete
purposed projects. Where the rock mass have high
strength and low brittleness, then, obtained ROP is
relatively lower than expected. Maximum ROP are
achieved as the alpha angle ranges from 50 to 65
degrees. As DPW ranges from about 20 to 40 cm, the
obtained ROP is also rather high.

Geological condition and rock mass characteriza-
tion in the field should be investigated before selecting
the TBM, since the machine specification including
thrust, cutter-head power and both diameter and num-
ber of disc have also influence on the ROP. Concluding
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is that geology and rock properties including ori-
entation, condition and frequency of discontinuities
together with rock strength and brittleness provide the
major control on the penetrability of tunnel boring
machine.
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